skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tejera‐Nieves, Mauricio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass ( Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO 2 assimilation ( A n e t ' ) declined from 0.9 mol CO 2 m -2 day -1 in early summer to 0.43 mol CO 2 m -2 day -1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO 2 m -2 day -1 in early summer to 0.39 mol CO 2 m -2 day -1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability. 
    more » « less
  2. Summary As global temperatures rise, improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalysing essential biological processes. Photorespiration is an essential recycling process in plants that is integral to photosynthesis and crop growth. The enzymes of photorespiration are targets for enhancing plant thermotolerance as this pathway limits carbon fixation at elevated temperatures. We explored the effects of temperature on the activity of the photorespiratory enzyme glycerate kinase (GLYK) from various organisms and the homologue from the thermophilic algaCyanidioschyzon merolaewas more thermotolerant than those from mesophilic plants, includingArabidopsis thaliana. To understand enzyme features underlying the thermotolerance ofC. merolaeGLYK (CmGLYK), we performed molecular dynamics simulations using AlphaFold‐predicted structures, which revealed greater movement of loop regions of mesophilic plant GLYKs at higher temperatures compared to CmGLYK. Based on these simulations, hybrid proteins were produced and analysed. These hybrid enzymes contained loop regions from CmGLYK replacing the most mobile corresponding loops of AtGLYK. Two of these hybrid enzymes had enhanced thermostability, with melting temperatures increased by 6 °C. One hybrid with three grafted loops maintained higher activity at elevated temperatures. Whilst this hybrid enzyme exhibited enhanced thermostability and a similar Kmfor ATP compared to AtGLYK, its Kmfor glycerate increased threefold. This study demonstrates that molecular dynamics simulation‐guided structure‐based recombination offers a promising strategy for enhancing the thermostability of other plant enzymes with possible application to increasing the thermotolerance of plants under warming climates. 
    more » « less